Optimal Polynomial Meshes Exist on any Multivariate Convex Domain

نویسندگان

چکیده

We show that optimal polynomial meshes exist for every convex body in $${\mathbb {R}}^d$$ , confirming a conjecture by A. Kroó.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On optimal polynomial meshes

Let P d n be the the space of real algebraic polynomials of d variables and degree at most n, K ⊂ R a compact set, ||p||K := supx∈K |p(x)| the usual supremum norm on K, card(Y ) the cardinality of a finite set Y . A family of sets Y = {Yn ⊂ K, n ∈ N} is called an admissible mesh in K if there exists a constant c1 > 0 depending only on K such that ||p||K ≤ c1||p||Yn , p ∈ P d n , n ∈ N, where th...

متن کامل

Sub-optimal polynomial meshes on planar Lipschitz domains

We construct norming meshes with cardinality O(ns), s = 3, for polynomials of total degree at most n, on the closure of bounded planar Lipschitz domains. Such cardinality is intermediate between optimality (s = 2), recently obtained by Kroó on multidimensional C starlike domains, and that arising from a general construction on Markov compact sets due to Calvi and Levenberg (s = 4). 2000 AMS sub...

متن کامل

Computing optimal polynomial meshes on planar starlike domains

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a uniform interior ball condition. Moreover, we provide an algorithm that computes such meshes on planar C convex domains by Blaschke’s rolling ball theorem. 2000 AMS subject classification: 41A10, 41A63, 65D05.

متن کامل

Constructing optimal polynomial meshes on planar starlike domains

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a Uniform Interior Ball Condition (UIBC). 2000 AMS subject classification: 41A10, 41A63, 65D05.

متن کامل

Optimal polynomial meshes and Caratheodory-Tchakaloff submeshes on the sphere

Using the notion of Dubiner distance, we give an elementary proof of the fact that good covering point configurations on the 2-sphere are optimal polynomial meshes. From these we extract CaratheodoryTchakaloff (CATCH) submeshes for compressed Least Squares fitting. 2010 AMS subject classification: 41A10, 65D32.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2023

ISSN: ['1615-3383', '1615-3375']

DOI: https://doi.org/10.1007/s10208-023-09606-x